Momentum Conservation
Time derivative of momentum.
How the momentum changes along a streamline in the flow.
\( \rho\dfrac{\partial\vec{v}}{\partial t} \)
\( 0 \, \)
\( + \)
\( \rho(\vec{v}\cdot\nabla)\vec{v} \)
\( = \)
\( - \)
\( \nabla P \)
\( + \)
\( \eta\nabla^{2}\vec{v} \)
\( + \)
\( \rho\vec{f} \)
Pressure gradient.
Viscous term
Body forces (e.g. gravity).
(Incompressible Newtonian Differential Vector Form)
\( \dfrac{d}{dt} {\displaystyle \iiint_V \rho\vec{v} \;dV} \)
\( = \)
\( {\displaystyle \iint_S \rho\vec{v} (\vec{v}\cdot\hat{n}) + P\hat{n} - \overline{\overline{\tau}}\cdot\hat{n} \;dS} \)
\( + \)
\( {\displaystyle \iiint_V \rho\vec{f} \;dV} \)
(General Integral Form in Vector Notation)
Material derivative of velocity (i.e. how does velocity change
in space and time).
\( \rho\dfrac{D\vec{v}}{Dt} \)
\( = \)
\( \rho\vec{f} \)
\( + \)
\( \nabla\cdot\overline{\overline{\sigma}} \)
Fluid stresses (i.e. how stresses contract or expand the fluid locally).
(General Differential Form in Vector Notation)
Material derivative of density (i.e. how does density change
in space and time).
\( \rho\dfrac{d\vec{v}}{dt} \)
\( + \)
\( \rho(\vec{v}\cdot\nabla)\vec{v} \)
\( = \)
\( \rho\vec{f} \)
\( + \)
\( \nabla\cdot\overline{\overline{\sigma}} \)
Material derivative of density (i.e. how does density change
in space and time).
(General Differential Form in Vector Notation)
Material derivative of density (i.e. how does density change
in space and time).
\( \rho\dfrac{d\vec{v}}{dt} \)
\( + \)
\( \rho(\vec{v}\cdot\nabla)\vec{v} \)
\( = \)
\( \rho\vec{f} \)
\( - \)
\( \nabla P \)
\( + \)
\( \nabla\cdot\overline{\overline{\tau}} \)
Material derivative of density (i.e. how does density change
in space and time).
(Incompressible Differential Form in Vector Notation)